Part Number Hot Search : 
ADV7162 MC145 BSR50 AD7417BR BC413B 52300 HYS64 15045
Product Description
Full Text Search
 

To Download IRFZ44NPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 94787
IRFZ44NPBF
Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175C Operating Temperature Fast Switching Fully Avalanche Rated Lead-Free
Advanced HEXFET(R) Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.
HEXFET(R) Power MOSFET
D
VDSS = 55V RDS(on) = 17.5m
G S
ID = 49A
Description
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 srew
Max.
49 35 160 94 0.63 20 25 9.4 5.0 -55 to + 175 300 (1.6mm from case ) 10 lbf*in (1.1N*m)
Units
A W W/C V A mJ V/ns C
Thermal Resistance
Parameter
RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
Typ.
--- 0.50 ---
Max.
1.5 --- 62
Units
C/W
www.irf.com
1
10/31/03
IRFZ44NPBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)DSS
V(BR)DSS/TJ
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss EAS
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Single Pulse Avalanche Energy
Min. Typ. Max. Units Conditions 55 --- --- V VGS = 0V, ID = 250A --- 0.058 --- V/C Reference to 25C, I D = 1mA --- --- 17.5 m VGS = 10V, ID = 25A 2.0 --- 4.0 V VDS = VGS, ID = 250A 19 --- --- S VDS = 25V, ID = 25A --- --- 25 VDS = 55V, VGS = 0V A --- --- 250 VDS = 44V, VGS = 0V, TJ = 150C --- --- 100 VGS = 20V nA --- --- -100 VGS = -20V --- --- 63 ID = 25A --- --- 14 nC VDS = 44V --- --- 23 VGS = 10V, See Fig. 6 and 13 --- 12 --- VDD = 28V --- 60 --- ID = 25A ns --- 44 --- RG = 12 --- 45 --- VGS = 10V, See Fig. 10 Between lead, 4.5 --- --- 6mm (0.25in.) nH G from package --- 7.5 --- and center of die contact --- 1470 --- VGS = 0V --- 360 --- VDS = 25V --- 88 --- pF = 1.0MHz, See Fig. 5 --- 530 150 mJ IAS = 25A, L = 0.47mH
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD trr Qrr ton Notes:
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
Conditions D MOSFET symbol 49 --- --- showing the A G integral reverse --- --- 160 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 25A, VGS = 0V --- 63 95 ns TJ = 25C, IF = 25A --- 170 260 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) Starting TJ = 25C, L = 0.48mH RG = 25, IAS = 25A. (See Figure 12)
ISD 25A, di/dt 230A/s, VDD V(BR)DSS, TJ 175C Pulse width 400s; duty cycle 2%. This is a typical value at device destruction and represents operation outside rated limits. This is a calculated value limited to TJ = 175C .
2
www.irf.com
IRFZ44NPBF
1000
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
1000
I D , Drain-to-Source Current (A)
100
I D , Drain-to-Source Current (A)
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
4.5V
10
10
4.5V
1 0.1
20s PULSE WIDTH TJ = 25 C
1 10 100
1 0.1
20s PULSE WIDTH TJ = 175 C
1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.5
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID = 49A
I D , Drain-to-Source Current (A)
TJ = 25 C TJ = 175 C
2.0
100
1.5
1.0
10
0.5
1
V DS = 25V 20s PULSE WIDTH 4 5 6 7 8 9 10 11
0.0 -60 -40 -20 0
VGS = 10V
20 40 60 80 100 120 140 160 180
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRFZ44NPBF
2500
VGS , Gate-to-Source Voltage (V)
2000
VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd
20
ID = 25A VDS = 44V VDS = 27V VDS = 11V
16
C, Capacitance (pF)
1500
Ciss
12
1000
8
500
Coss Crss
4
0
1
10
100
0
VDS , Drain-to-Source Voltage (V)
0
10
20
30
40
50
60
70
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000
1000
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY R DS(on)
100
TJ = 175 C
ID, Drain-to-Source Current (A)
100
10
10
100sec 1msec
1
TJ = 25 C
1 Tc = 25C Tj = 175C Single Pulse 1 10 VDS , Drain-toSource Voltage (V) 10msec
0.1 0.0
V GS = 0 V
0.6 1.2 1.8 2.4
0.1
VSD ,Source-to-Drain Voltage (V)
100
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRFZ44NPBF
50
VDS
40
RD
VGS RG
D.U.T.
+
ID , Drain Current (A)
-VDD
30
VGS
Pulse Width 1 s Duty Factor 0.1 %
20
10
Fig 10a. Switching Time Test Circuit
VDS 90%
0
25
50
TC , Case Temperature ( C)
75
100
125
150
175
Fig 9. Maximum Drain Current Vs. Case Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
10
Thermal Response (Z thJC )
1
D = 0.50 0.20 0.10 PDM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1
0.1
0.05 0.02 0.01
0.01 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFZ44NPBF
EAS , Single Pulse Avalanche Energy (mJ)
15V
300
TOP
240
VDS
L
DRIVER
BOTTOM
ID 10A 18A 25A
RG
20V
D.U.T
IAS tp
+ V - DD
180
A
0.01
120
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
60
0
25
Starting TJ , Junction Temperature ( C)
50
75
100
125
150
175
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
I AS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
12V
.2F .3F
VGS
QGS VG QGD
VGS
3mA
D.U.T.
+ V - DS
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
6
www.irf.com
IRFZ44NPBF
Peak Diode Recovery dv/dt Test Circuit
D.U.T*
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
+ +
-
RG VGS
* dv/dt controlled by RG * ISD controlled by Duty Factor "D" * D.U.T. - Device Under Test
+ VDD
*
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive P.W. Period D=
P.W. Period
[VGS=10V ] ***
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
[VDD]
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
[ ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 14. For N-channel HEXFET(R) power MOSFETs
www.irf.com
7
IRFZ44NPBF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 1- GATE- DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN
LEAD ASSIGNMENTS
HEXFET
14.09 (.555) 13.47 (.530)
4- DRAIN
4.06 (.160) 3.55 (.140)
4- COLLECTOR
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER
Note: "P" in assembly line position indicates "Lead-Free"
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/03
8
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRFZ44NPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X